789 research outputs found

    Post-Newtonian cosmological dynamics of plane-parallel perturbations and back-reaction

    Full text link
    We study the general relativistic non-linear dynamics of self-gravitating irrotational dust in a cosmological setting, adopting the comoving and synchronous gauge, where all the equations can be written in terms of the metric tensor of spatial hyper-surfaces orthogonal to the fluid flow. Performing an expansion in inverse powers of the speed of light, we obtain the post-Newtonian equations, which yield the lowest-order relativistic effects arising during the non-linear evolution. We then specialize our analysis to globally plane-parallel configurations, i.e. to the case where the initial perturbation field depends on a single coordinate. The leading order of our expansion, corresponding to the "Newtonian background", is the Zel'dovich approximation, which, for plane-parallel perturbations in the Newtonian limit, represents an exact solution. This allows us to find the exact analytical form for the post-Newtonian metric, thereby providing the post-Newtonian extension of the Zel'dovich solution: this accounts for some relativistic effects, such as the non-Gaussianity of primordial perturbations. An application of our solution in the context of the back-reaction proposal is eventually given, providing a post-Newtonian estimation of kinematical back-reaction, mean spatial curvature and average scale-factor.Comment: revised to match the version accepted for publication in JCA

    Deterministic Timed Finite State Machines: Equivalence Checking and Expressive Power

    Full text link
    There has been a growing interest in defining models of automata enriched with time. For instance, timed automata were introduced as automata extended with clocks. In this paper, we study models of timed finite state machines (TFSMs), i.e., FSMs enriched with time, which accept timed input words and generate timed output words. Here we discuss some models of TFSMs with a single clock: TFSMs with timed guards, TFSMs with timeouts, and TFSMs with both timed guards and timeouts. We solve the problem of equivalence checking for all three models, and we compare their expressive power, characterizing subclasses of TFSMs with timed guards and of TFSMs with timeouts that are equivalent to each other.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    32 Ă— 32 CMOS SPAD Imager for Gated Imaging, Photon Timing, and Photon Coincidence

    Get PDF
    We present the design and simulations of a single-photon sensitive imager based on single photon avalanche diodes (SPADs) with an innovative pixel architecture that includes four separate SPADs with independent active time-gating and quenching circuit, a shared time-to-digital converter (TDC) with 50-ps resolution, four independent photon counters, and multiple operation modes. The TDC is driven by smart arbitration logic, which preserves spatial information among the four detectors; furthermore, an alternative operation mode exploits photon-coincidence on multiple detectors to reduce the effect of high background levels, e.g., in light detection and ranging applications with strong ambient light. Key features are the ability to operate in simultaneous photon counting and timing modes for capturing 2-D and 3-D images of the scene in a single shot (frame), the option of a counting-only mode, reducing power consumption, and increasing achievable frame-rate when timing information is not needed, and the ability to individually shut down noisy detectors or to enable just some regions of interests

    Electronic structure of defected polyethylene for Schottky emission

    Get PDF
    Polyethylene is one of the most used solid state insulators in electrical power industry. It is particularly used to electrically insulate high-voltage cables. Under the stresses associated with AC power supplies, this material undergoes ageing, which is often associated with treeing. It is thought that this phenomenon starts from gaseous defects embedded in the insulator bulk, leading to the formation of a cluster of cavities. Treeing is able to dig the matrix until complete breakdown of the insulating components. Cavities are generated by a sequence of partial discharges. Each discharge is triggered by an electron emission from the surface at the interface with gas. The Schottky effect is believed to be the most likely mechanism able to cause this electron emission.Our DFT modelling has suggested that electron emission is highly unlikely to occur if the surface is neutral. DOS analysis has revealed that the Schottky effect is also related to chemical defects. The latter must exhibit electronic states slightly under the conduction band. Furthermore, these sites must be able to act as a trap for negative charge excess. A polyethylene system with an excess electron, combined with specific oxidative groups, has proved to be consistent with experimental data

    Hyperspectral techniques and GIS for archaeological investigation

    Get PDF
    Aerial photos, both in colour and in black and white, have always been very important tools in archaeological surveys. Sensors, called hyperspectral, were available on the market for some years: they are able to expand the research beyond the visible area of the electromagnetic spectrum as far as the thermal infrared too. The use of these sensors, at first restricted to the applications in the traditional fields of Remote Sensing (such as, for instance, Botany, Agronomy, Geology, Hydrology), was spreading, in recent years, to some sectors, such as archaeological surveys, which were unexplored before. The presence of structures and hollows in the top subsurface is likely to cause variations in humidity in the surface. These variations affect both vegetation, and some physical features of the ground such as thermal conductivity and capacity. Especially in the first hours of day, you can notice thermal anomalies due to different evaporation. The exam of these anomalies, carried out by the use of techniques of digital processing of images in the spectrum bands particularly sensitive to the abovementioned indicators, enables the photointerpreter to determine possible signs of underground structures of archaeological interest. The application of the remote sensing in archaeology allows to acquire, with rapidity, a lot of information connected to the territory; that's the reason why, together with the development of sensors, came out the necessity to take advantage from the potentialities offered by the GIS to manage, process and file the spatial dates acquired with the remote sensing techniques. In this work, in fact, the results produced with the image processing technique were implemented in a GIS and were overlaid on the historical and contemporary maps and on the DEM in order to produce, for each study area, a Prediction map of archaeological finds

    Recent Advances in Time-resolved Nir Spectroscopy for Nondestructive Assessment of Fruit Quality

    Get PDF
    Non-destructive monitoring of food internal attributes by near infrared spectroscopy (NIRS) is typically performed by the continuous wave (CW) technique, where steady state light sources (e.g. lamp or LED with constant intensity in time) and photodetectors (e.g. photodiode or charge coupled device camera) are used to measure light attenuation. Indeed light scattering can largely affect light attenuation resulting in the need of calibration for each new batch of samples. To tackle this effect time-resolved NIRS (TRS) has been proposed to improve the classical CW approach to NIRS. The main feature of TRS is its ability to retrieve information on photon path-length in a diffusive medium (generally much larger than the geometrical distance between source and detector). The use of TRS in combination with proper physical models for photon migration allows for the complete optical characterisation with the simultaneous non-destructive measurement of the optical properties (absorption and scattering) of a diffusive medium. This can be of special interest for most fruits and vegetables as well as for other foods (e.g. meat, fish, and cheese), because information derived by TRS refers to the internal properties of the medium, and is not so much affected by surface features as is the case for CW spectroscopy. In the past TRS measurements were possible only with complex laboratory instrumentation consisting of picosecond pulsed lasers, water cooled photomultiplier tubes, and electronic chain for timecorrelated single photon counting. In this work we present the recent advances in TRS technology (laser, detectors and acquisition electronics) that allow the design of portable instrumentation for use in the preharvest (i.e. in the field) and post-harvest

    Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow

    Get PDF
    Speckle contrast optical spectroscopy (SCOS) measures absolute blood flow in deep tissue, by taking advantage of multi-distance (previously reported in the literature) or multiexposure (reported here) approach. This method promises to use inexpensive detectors to obtain good signal-to-noise ratio, but it has not yet been implemented in a suitable manner for a mass production. Here we present a new, compact, low power consumption, 32 by 2 single photon avalanche diode (SPAD) array that has no readout noise, low dead time and has high sensitivity in low light conditions, such as in vivo measurements. To demonstrate the capability to measure blood flow in deep tissue, healthy volunteers were measured, showing no significant differences from the diffuse correlation spectroscopy. In the future, this array can be miniaturized to a low-cost, robust, battery operated wireless device paving the way for measuring blood flow in a wide-range of applications from sport injury recovery and training to, on-field concussion detection to wearables

    Semantics and computation of the evolution of hybrid systems with ariadne

    Get PDF
    In this talk we will present material on the semantics, computability, and algorithms for the evolution of hybrid dynamical systems, and an overview of the tool Ariadne for verification of hybrid systems [1]. Hybrid systems are characterised by undergoing continuous evolution interspersed by discrete jumps. They exhibit all the complexities of finite automata, nonlinear dynamic systems and differential equations, and are extremely difficult to analyze. We will consider hybrid systems in which the continuous dynamics is given by a differential equation x = f(x), with discrete jumps x' = ri(x) which occur as soon as a guard condition gi(x) = 0 is activated. It is clear that the evolution of a hybrid system undergoes discontinuities, but since only continuous functions are computable, it is not clear to what extent, if any, it is possible to perform a rigorous analysis of a hybrid system. We will first show that we can define lower and upper semantics of evolution under which it is possible to compute reachable sets, and that away from discontinuity points (such as grazing or corner collision points), these semantics agree [2]. In order to perform reachability analysis, it is necessary to define the evolution over bounded initial sets of states. We show that this can be done using the operations of range, compose, flow and solve operations on functions. We will see that constrained image sets of the form {f(x) | x ? D | g(x) ? C}, are sufficient to express the evolution exactly, except for the case of degenerate (non-transverse) cross- ings [3]. The flow operation is the most computationally demanding, and we will give some details of the implementation and efficiency considerations [4]. We will give examples of reachability analysis in Ariadne, including electrical power converters and heating systems. Finally, we will outline some areas of active research, including differential inclusions [5] and modular reasoning

    Twinning Commercial Radio Waveforms in the Colosseum Wireless Network Emulator

    Full text link
    Because of the ever-growing amount of wireless consumers, spectrum-sharing techniques have been increasingly common in the wireless ecosystem, with the main goal of avoiding harmful interference to coexisting communication systems. This is even more important when considering systems, such as nautical and aerial fleet radars, in which incumbent radios operate mission-critical communication links. To study, develop, and validate these solutions, adequate platforms, such as the Colosseum wireless network emulator, are key as they enable experimentation with spectrum-sharing heterogeneous radio technologies in controlled environments. In this work, we demonstrate how Colosseum can be used to twin commercial radio waveforms to evaluate the coexistence of such technologies in complex wireless propagation environments. To this aim, we create a high-fidelity spectrum-sharing scenario on Colosseum to evaluate the impact of twinned commercial radar waveforms on a cellular network operating in the CBRS band. Then, we leverage IQ samples collected on the testbed to train a machine learning agent that runs at the base station to detect the presence of incumbent radar transmissions and vacate the bandwidth to avoid causing them harmful interference. Our results show an average detection accuracy of 88%, with accuracy above 90% in SNR regimes above 0 dB and SINR regimes above -20 dB, and with an average detection time of 137 ms.Comment: 8 pages, 13 figures, 2 table
    • …
    corecore